

Search for supersymmetry at CMS in final states with a single lepton, jets, and missing momentum

Finn Rebassoo
UC Santa Barbara
On behalf of the CMS collaboration

CMS PAS SUS-11-015

Signature, Backgrounds, and Predictions

- Search for SUSY in 1 isolated lepton + jets + MET channel
 - → 1 isolated lepton from decay of a W or new particle
 - → high-energetic jets from the decays of strongly-coupled SUSY particles
 - → MET from the weakly-interacting LSPs
- Backgrounds
 - W+jets & ttbar: largest backgrounds, requirement of p_T jets and high $H_T = \sum_{jets} p_T^j$ reduces this background
 - QCD: suppressed by multiple energetic jets, isolated lepton, and large MET
- Two approaches for final selection and background estimation
 - Lepton Spectrum method
 - Uses lepton p_T spectrum to predict major background, 1-lepton SM ttbar & W+jets
 - → Lepton-Projection (L_D) Method
 - Sensitive to helicity angle of lepton in W rest frame (developed in context of W polarization measurement)

Data-driven methods and reliance on W polarization

- Both lepton spectrum and lepton projection methods data-driven and rely on well understood properties of W polarization
- For ttbar, W polarization very precise prediction of SM theory, calculated to NNLO [f₀=0.687±0.005, f₊=0.0017±0.0001, f₋=0.311±0.005]. D0 and CDF measurements agree with the theory prediction.

Theory: doi/10.1103/PhysRevD.81.111503 D0: doi/10.1103/PhysRevLett.107.021802 CDF: doi/10.1103/PhysRevLett.105.042002

 For W+jets, theory calculates W polarization to NLO and helicity fractions stable with respect to QCD corrections. Experimental measurement at CMS (based on the L_D variable used in this SUSY search) consistent with theory.

Theory: arXiv:1103.5445

CMS: doi/10.1103/PhysRevLett.107.021802

Event Preselection Requirements

A	
Quantity	Requirement
Jet p _T threshold	> 40 GeV
Jet η range	$ \eta < 2.4$
Number of jets	\geq 3 (LP Variable method),
-	≥ 4 (Lepton Spectrum method)
Lepton p_T threshold	> 20 GeV
Muon η range	$ \eta < 2.1$
Muon isolation (relative)	< 0.10
Electron isolation (relative)	< 0.07 (barrel), < 0.06 (endcaps)
Electron η range	$ \eta < 2.4$, excluding barrel-endcap overlap
Lepton $p_{\rm T}$ threshold for veto	> 15 GeV

All results in this talk for 1.1 fb⁻¹

Plots made for \geq 3 jets, exactly 1 muon w/ p_T>20 GeV, H_T>300 GeV, MET>60 GeV

Lepton Spectrum Method

Lepton p_T and MET distributions

- In SM (ttbar and W+jets), the MET (neutrino p_T) and lepton p_T spectra are closely related. Differences stem from:
 - W-polarization in ttbar and W+jets, lepton selection criteria, feed-down from dilepton and τ events
 - → MET instrumental resolution and systematic mismeasurements (modeled using QCD data)
- In SUSY, the MET and lepton $p_{_{\! T}}$ spectra decouple due to the presence of two LSPs. MET spectra tend to be much harder than the lepton $p_{_{\! T}}$ spectra in many models

Lepton Spectrum Method

Search in MET tail with \geq **4 jets and H**_T>**500**. In ttbar & W+jets, genuine MET from neutrinos dominant source of MET, instrumental MET less important. Method models both types of MET using data-driven methods.

Background prediction methods

- Single lepton ttbar and W+jets background (~75%) is modeled based on lepton p_T spectra (for real MET) smeared with artificial MET templates (for fake MET).
- 2. For dilepton ttbar and $\tau \rightarrow \mu/e$ decays (~25%) backgrounds estimated using different methods with dilepton and single lepton control samples in the data.
- 3. QCD background (<1%) is constrained in data-driven way by calculating ratio of non-isolated to isolated leptons at low MET and then multiplying this ratio by non-isolated leptons at high MET.
- 4. Other backgrounds (<1%) are small and obtained from MC.

MET resolution: smearing of lepton p_T spectrum

To model instrumental MET resolution effects, lepton p_T spectra are smeared using artificial MET templates obtained in data (from single jet triggers). The smearing procedure for 1 mu+jets events:

Full MET prediction is sum of smeared lepton $p_{\scriptscriptstyle T}$ over all single lepton events

Results for Lepton Spectrum Method

Loose: H₋>500, MET>250 GeV

Tight: H₊>500, MET>350 GeV

Sample	Loose Selection $(e+\mu)$	Tight Selection $(e+\mu)$
Predicted SM 1 ℓ	$34.6 \pm 7.7 \pm 10.8$	$8.8 \pm 3.7 \pm 3.4$
Predicted SM dilepton	$4.0 \pm 3.9 \pm 0.8$	$0.9 \pm 1.9 \pm 0.9$
Predicted single τ	$10.5 \pm 1.2 \pm 0.5$	$2.3 \pm 0.5 \pm 0.2$
Predicted QCD background	$0.0 \pm 1.2 \pm 0.3$	$0.0 \pm 1.0 \pm 0.3$
Single top (MC), Z+jets (MC)	$0.7 \pm 0.2 \pm 0.2$	$0.1 \pm 0.1 \pm 0.1$
Total predicted SM	$49.8 \pm 8.8 \pm 10.8$	$12.1 \pm 4.3 \pm 3.6$
Data	52	8

- SM 1 lep from smeared muon p_→ spectra
- Predicted SM dilepton and single τ method described on next slide
- QCD background constrained to be negligible using data-driven technique
- Single top, Z+jets are very small and taken from MC
- Dominant systematic uncertainty is JES (see backup slides)

Total predicted SM agrees well with observed in both loose and tight selection

Dilepton & $\tau \rightarrow \mu/e$ backgrounds

- Lepton p_T spectrum does not predict MET from these backgrounds
 - Dilepton ttbar events: ~15% of total (from MC).
 - Use control sample of dilepton events (i.e. $[\mu,\mu]$, [e,e], $[\mu,e]$) to estimate the MET tail of these events
 - ttbar, W+jets τ→μ/e events: ~10% of total (from MC).
 - Use control sample of $1e/\mu$ to predict MET by taking part of the lepton $p_{_T}$ and vectorially adding it to the MET (based on MC)

Lepton Spectrum exclusion plots

Loose selection ($H_T>500$, MET>250)

Signal efficiency uncertainties:

on efficiency):
• JES ~ 10%

- NLO effect ~ 10-18%
- Lepton efficiency (5%)
- Luminosity uncertainty (4.5%)

Apply 20% uncertainty flat in m_0 , $m_{1/2}$ plane.

Tight selection ($H_T > 500$, MET > 350)

Systematic uncertainties on background prediction also taken into account. See backup slides for table of systematics.

Lepton-Projection (L_P) Method

Lepton Projection (L_p) variable

$$L_{P} = \frac{\vec{p}_{T}(\ell) \cdot \vec{p}_{T}(W)}{|\vec{p}_{T}(W)|^{2}}$$

- L_p is a polarization variable, very highly correlated to cos(θ*); L_p→1/2(1+cos(θ*)) at high p_T(W)
- Fit of L_p templates were used to measure
 W polarization in W+jets events at CMS
 PRL 107 (2011) 021802
- L_P uses both angle (MET, lepton) and momenta to separate SUSY/SM

Perform search in L_p , binned in $S^{lep}_{\ T}$ $S^{lep}_{\ T}$ good measure of energy in leptonic sector, without effecting lepton-neutrino correlation

$$S_{\mathrm{T}}^{\mathrm{lep}} = |p_{T}(\ell)| + |E_{\mathrm{T}}|$$

L_P background method

Muon Channel, 250>S_T>350 GeV

- ≥3 jets, H_{_}>500 GeV
- Search in L_p variable in 3 bins of S_{T}^{lep} : $S_{T}^{lep} = 250-350$ GeV, 350-450 GeV, 450+ GeV
- Also check method in bin of lower S^{lep}_T,
 150-250 GeV
- Estimate number of SM background in signal region by multiplying control region by R_{cs}, translation factor from MC

 $R_{CS} = \frac{Number \ of \ events \ with \ L_P < 0.15}{Number \ of \ events \ with \ L_P > 0.3}$

R_{cs}: translation factor to extrapolate from control to signal region:

$$N_{SMpred}(L_P < 0.15) = R_{CS}N_{data}(L_P > 0.30)$$

L_p distribution in different bins of S^{lep}_T

09/01/2011

Muons

Electrons

Good agreement between data and MC; electron channel has more QCD

QCD prediction in the L_p method

- In μ channel, perform data-driven method using isolation of the muon and MET to show QCD negligible (similar to lepton spectrum method)
- In e channel, larger QCD contribution, especially in control region
 - Fit L_p variable in signal region (L_p>0.3) with EWK (ttbar & W+jets) L_p template from MC and QCD L_p template from data (electron-ID inversion). Then extrapolate fit to signal region (L_p<0.15) to obtain final QCD and EWK number

Results, L_P method

— Muons —				\	
MUUIIS	Control Re	Control Region ($L_P > 0.3$)		Signal Region ($L_P < 0.3$	
S _T ^{lep} Range (G	eV) Total MC	Data	Total MC	SM estimate	Data
[150-250]	385±7	368	73.9±3.0	70.6±11	84
[250-350]	116±2	112	28.1 ± 1.1	27.2±4.6	29
[350-450]	43.4±2.	41	11.5±0.7	10.9 ± 2.3	9
> 450	18.4±0.8	15	6.5±0.4	5.3 ± 1.8	6

Electrons —							
LIECTIONS	Control Region ($L_P > 0.3$)		Signal Region ($L_P < 0.15$)				
S _T ^{lep} Range (GeV)	QCD	EWK	Data	QCD	EWK	SM estimate	Data
[150-250]	39.5±15.5	350±24	390	1.0±0.3	60.8±4.1	61.8±8.7	69
[250-350]	5.0±5.2	117±12	122	0	22.2±2.2	22.2±4.4	21
[350-450]	7.1±3.9	28.9±6.2	36	0	6.9±1.5	6.9±1.7	7
> 450	6.5±5.7	12.5±3.8	19	0	4.3±1.3	4.3±1.5	3

- SM estimates agree with observation within uncertainties
- No signs of excess observed

Dominant systematic uncertainty is number of events in control region (see backup slides)

L_P exclusion plot

Signal efficiency uncertainties:

uncertainty	values
\mathcal{L}	4.5%
trigger efficiency	1%
JES 5%	10%-15%, varies between SUSY grid points
₹ _T resolution 10%	1%-15%, varies between SUSY grid points
PDF and NLO	10%

Exclusion limit takes into account predictions in each of the bins of S^{lep}_{T} (except S^{lep}_{T} 150-250 GeV bin) and uncertainties on signal efficiency and background prediction (see backup slides for tables of background prediction systematics)

Lepton Spectrum and L_p exclusion plots

Limits for both methods very similar; constrain gluino mass to be >~900 GeV (for m_0 <500 GeV, $tan\beta$ =10)

Conclusions

- 1. Single lepton sample (e and μ) with very loose selection requirements, consistent with SM simulation. Conclude:
 - (a) Sample dominated by SM backgrounds, i.e., W+jets and ttbar
 - (b) No evidence for large non-SM contribution
 - (c) We can use the sample to estimate SM with data-driven methods
- 2. Apply two different data-driven background prediction methods, both which rely on known properties of W polarization in ttbar and W+jets.
 - (a) Lepton Spectrum: data p_⊤(lepton)→MET
 - (b) Lepton Projection: data L_p(high)→L_p(low)
- 3. Good agreement between predicted and observed yields for both methods. Also good agreement of shapes.
 - (a) Lepton Spectrum method: shape of MET distribution
 - (b) Lepton Projection: shape of L_D distribution (control/signal samples)
- 4. CMSSM Exclusion plots from both methods.

09/01/2011

(a) Constrain gluino mass to be >~900 GeV (for m_0 <500 GeV, $tan\beta$ =10)

Backup Slides

Generator level mu, nu p_T

(c) W + jets, no p_T threshold

ttbar MC:

- □ The genuine MET is modeled based on the muon P_T spectrum;

NB: the electron P_T spectrum has significant QCD contamination and is not used today (but should be included later in 2011).

(d) W + jets, with $p_T > 20$ GeV threshold

Systematics Lepton Spectrum Method

Source	1	$\Delta(N_{\rm predicted}/N_{\rm true})(\%)$
	(Loose selection)	(Tight selection)
 ₹ _T and jet energy scale	23	31
W polarization in $t\bar{t}$	4	1.4
W polarization in W+jets	9	15
$\sigma(t\bar{t})$ and $\sigma(W)$	16	16
Lepton efficiency (μ) vs. p_T	4	4
Lepton efficiency (e) vs. p_T	4	4
Backgrounds in control sample	7	7
Total	31	39

L_P method, kinematic dist. (muon channel)

Data and MC comparison for muon events from the preselection and with S^{lep}_{T} = 150-250 GeV

L_P method, kinematic dist. (electron channel)

Data and MC comparison for electron events from the preselection and with S^{lep}_{τ} = 150-250 GeV

Mu Channel: L_p yields in different bins of S^{lep}_T

MC numbers

$L_{P} < 0.15$	Muons: S ^{lep} range (GeV)				
Sample	[250-350]	[350-450]	[450-inf]		
tt (l)	11.4 ± 0.9	2.91 ± 0.4	0.8±0.2		
tt (ll)	2.2 ± 0.4	0.6 ± 0.2	0.1 ± 0.1		
W	14.5 ± 0.6	8.0 ± 0.5	5.6 ± 0.4		
Z	0±1.5	0±1.5	0±1.5		
Total MC	28.1±1.1	11.5 ± 0.7	6.5 ± 0.4		
LM1	24.2±0.9	23.1 ± 0.9	16.2 ± 0.7		
LM3	24.8 ± 0.8	16.7 ± 0.6	9.7±0.5		
LM6	1.9 ± 0.0	2.5 ± 0.1	5.9 ± 0.1		

 In MC, W+jets dominant background, especially at high S^{lep}_T

e Channel: L_P yields in different bins of S_T

$L_{\rm P} < 0.15$	Electrons: S _T range (GeV)				
Sample	[250-350]	[350-450]	[450-inf]		
tt (l)	7.8 ± 0.7	3.0 ± 0.4	1.0±0.3		
tī (ℓℓ)	2.4±0.4	0.7±0.2	$0.4{\pm}0.2$		
W	10.5 ± 0.5	5.2 ± 0.4	4.7 ± 0.3		
Z	0±1.5	0 ± 1.5	0±1.5		
Total MC	20.8±1.0	8.8±0.6	6.1±0.5		
LM1	22.9±0.9	20.8±0.8	14.7±0.7		
LM3	22.8±0.7	14.8 ± 0.6	9.7±0.5		
LM6	1.7 ± 0.0	2.3±0.1	5.3 ± 0.1		

Systematics L_P Method (muons)

$S_{T}^{lep} \in$	[150-250]	[250-350]	[350-450]	> 450
R _{CS}	0.19	0.24	0.26	0.35
$\Delta N/N$ at 1.1 fb ⁻¹ (%)	13	21	36	41
Systematic Uncertainty (%)	15	17	21	34
Control Region Statistics (%)	5	10	15	24
MC Statistics (%)	4	4	8	8
JES Uncertainty (Flat 5%) (%)	10	9	8	19
MET Resolution (10%) (%)	1	3	2	3
Lepton pT Scale (%)	2	2	1	3
W/tt̄ Ratio (%)	5	5	6	10
tt (\(\ell\ell\) (%)	5	4	2	1
W Polarization (%)	1	1	2	2
tt Polarization (%)	5	5	5	5

Systematics L_P Method (electrons)

$S_{\mathrm{T}}^{\mathrm{lep}} \in$	[150-250]	[250-350]	[350-450]	>450
R_{CS}	0.16	0.18	0.19	0.23
$\Delta N/N$ at 1.1 fb ⁻¹ (%)	12	22	38	58
Systematic Uncertainty (%)	14	20	24	34
Control Region Statistics (%)	5	9	17	24
MC Statistics (%)	1	10	7	8
JES Uncertainty (Flat 5%)(%)	9	10	10	19
MET Resolution (10%) (%)	2	2	5	7
W/tt̄ Ratio (%)	6	7	6	10
tt (\(\ell\ell\) (%)	6	7	6	2
W Polarization (%)	1	1	2	3
tt̄ Polarization (%)	5	5	5	5

L_p: additional electron QCD fit plots

Lepton Projection (L_P) variable

0.6

 $L_{\rho}(\mu^{-})$

0.2

0.8

1.2

Fit of L_p templates were used to measure W polarization in W+jets events at CMS PRL 107 (2011) 021802

